If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+10a=21=0
We move all terms to the left:
a^2+10a-(21)=0
a = 1; b = 10; c = -21;
Δ = b2-4ac
Δ = 102-4·1·(-21)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{46}}{2*1}=\frac{-10-2\sqrt{46}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{46}}{2*1}=\frac{-10+2\sqrt{46}}{2} $
| 2q+4=1q+1 | | −114=3(4+6x) | | 8x+10=38 | | 1=5(77-s) | | 7^2x-2=343 | | 89.99+10p+30+10(p-2)=200 | | (2x^2+1)(x-6)=0 | | 4x-55=53 | | -9+2n=29 | | 5x+30=6x-20 | | 6(x-5)-3(x-2)=12x+18 | | 15j-13j=16 | | n^2(2n-5)(3n+1.5)=0 | | 13=2.m+5 | | 16g-15g=11 | | 5x-33=16 | | -3+2(4x-13)=-40+7 | | 20=6x-24 | | 3x+4+76=180 | | 3(u+3.1)=29.4 | | 3x+9=2x-9/2 | | p^2-24=-2p | | p^2-2p=-2p | | 24=-3m-3m | | 80x-60=12(7x-5) | | 2(x+6)(3x-2)=0 | | -7a-5a=12 | | 14-4y=21-y | | 15-4y=21 | | 8x+20x-8=7(4x+5) | | 7.4=8.9-0.5x | | 5x+(5x+4)=70 |